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Abstract

Accurate facial expression analysis is an essential step

in various clinical applications that involve physical and

mental health assessments of older adults (e.g. diagnosis

of pain or depression). Although remarkable progress has

been achieved toward developing robust facial landmark

detection methods, state-of-the-art methods still face many

challenges when encountering uncontrolled environments,

different ranges of facial expressions, and different demo-

graphics of population. A recent study has revealed that

the health status of individuals can also affect the perfor-

mance of facial landmark detection methods on front views

of faces. In this work, we investigate this matter in a much

greater context using seven facial landmark detection meth-

ods. We perform our evaluation not only on frontal faces

but also on profile faces and in various regions of the face.

Our results shed light on limitations of the existing methods

and challenges of applying these methods in clinical set-

tings by indicating: 1) a significant difference between the

performance of state-of-the-art when tested on the profile

or frontal faces of individuals with vs. without dementia; 2)

insights on the existing bias for all regions of the face; and

3) the presence of this bias despite re-training/fine-tuning

with various configurations of six datasets.

1. Introduction

Facial landmark detection is a prerequisite for many

facial analysis applications. Example clinical use cases

include detecting pain in non-communicative individuals,

clinical assessment of depression, and orofacial and speech

assessment in individuals with a neurological motor dis-

order [6, 30]. For a long time, active appearance mod-

els (AAM) were the method of choice for facial landmark

detection [12]. In recent years, methods beyond AAM

have shown superior performance for landmark detection.

Representative examples include Conditional Local Neu-

ral Fields [5], Coarse-to-Fine-Shape-Searching [35], Face

Alignment Network [8], Mnemonic Descent Method [32],

and Position Map Regression Network [14].

Despite the recent promising advances in this field, state-

of-the-art methods still face many challenges when applied

in realistic scenarios [9, 31]. To address these challenges,

significant efforts have been made towards collecting im-

ages of faces in the wild (i.e. natural environment) and to

cover the spectrum of age, gender, and ethnicity. However,

recent studies have revealed that merely collecting more

training data might not mitigate the effect of variables such

as age, gender, and ethnicity [9, 31]. Hence, to develop al-

gorithms that are fair with respect to potential biases, further

research is required on the effect of different variables such

as age, gender, and health conditions on the performance of

facial landmark detection methods.

In a recent study, Taati et al. [31] have shown that cogni-

tive ability (healthy vs. cognitive impairment) also affects

the performance of facial landmark detection methods on

frontal faces of older adults. In this paper, we experimen-

tally examine the presence of such bias in a greater scope

using seven facial landmark detection methods. Moreover,

we perform our evaluation on profile faces as well as on

frontal faces and for various regions of the face, i.e., jaw,

brows, nose, eyes, and mouth. Additionally, to further eval-

uate the sources of bias, we assess the performance of these

methods when re-trained/fine-tuned with various training

configurations of six different datasets.

Our comprehensive evaluation shows that the perfor-

mance of landmark detection methods drops on the frontal

and profile faces of older people with dementia as compared

to cognitively healthy older adults. It also indicates that the

difference in the performance between the two groups is

higher in some regions of the face, such as the mouth, the
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eyes, and the nose, as compared to other regions such as the

jaw and the brows. Moreover, our analysis shows that re-

training/fine-tuning the methods improves the performance

significantly on both groups, but the gap between the perfor-

mance on individuals with and without dementia persists.

In the remainder of this paper, we first provide a brief

overview of the datasets and landmark detection methods

used in our evaluation in Sections 2 and 3 respectively. Sec-

tions 4 and 5 describe our experimental settings and results

and Section 6 covers conclusions and future work.

2. Datasets

To conduct the experiments in this paper, we used the

following six datasets: Helen [23], AFW [28], LFPW [7],

MENPO Profile [34], UNBC-McMaster Pain Archive [25],

and Pain Dataset for Dementia [16]. The MENPO Profile

and Pain Dataset for Dementia include both frontal and pro-

file faces, while the remaining four datasets only contain

frontal and semi-frontal faces. The role of each dataset in

each experiment (i.e. training or test) is described in §4. An

overview of these datasets is provided below.

Helen: This dataset is constructed by crawling 2,330 face

images from Flickr using keywords such as “family”, “out-

door”, “boy” etc. The faces were cropped and manually

annotated using the PUT Face [20] 194 landmark points.

Annotated Faces in the Wild (AFW): This dataset is also

collected from Flickr images and consists of 468 faces [28].

The images of this dataset come along with annotations for

six landmark points.

Labeled Face Parts in the Wild (LFPW): This database

consists of 3,000 faces downloaded from the web using

search queries (Google, Yahoo, Flickr). Annotations in-

clude 29 facial landmark points.

Since the landmark annotation for the above three

datasets did not use a consistent set of points, Sagonas

et al. [29] later re-annotated a subset of examples from these

datasets using a standard set of 68 landmark points[15]

shown in Figure 1(a). From this consistently annotated sub-

set we use 3,148 images (2,000 from Helen, 337 from AFW,

and 811 from LFPW). The majority of images in these

datasets are from young people and children with happy or

neutral expressions. In the remainder of this paper we refer

to the union of these three datasets as “Source 1” (S1).

MENPO Profile: This dataset contains 2,300 profile

images obtained from the FDDB [19] and AFLW [22]

databases and re-annotated using 39 profile view landmark

points (Figure 1(b). We denote this dataset with Mp.

UNBC-McMaster Pain Archive: The publicly available

part of this dataset consists of 48,398 face images from 25

participants [24]. Participants in this dataset had a shoulder

injury in one of their shoulders. During data collection, par-

ticipants were asked to move their injured shoulder in one

session, and their healthy shoulder in another session and

their videos were recorded. Each image is annotated with

the location of 68 facial landmarks, and also with the level

of pain expressed in each image. Pain is coded using a 0 to

16 pain scale [27] based on the Facial Action Coding Sys-

tem (FACS) [24], where 0 indicates no pain and 16 indicates

the highest level of pain observed.

Using the FACS-based pain ratings, we subsampled the

UNBC-McMaster dataset to 2,951 images while preserving

the same distribution of pain ratings as the full dataset. In

the rest of this paper we denote this subset of the UNBC-

McMaster archive as “Source 2” (S2).

Pain Dataset for Dementia: This dataset contains data

from 102 older adult participants [16] (mean age: 78.8) with

and without dementia. From this dataset, Taati et al. [31]

selected data from 86 participants based on the availability

of high-quality images. Of these 86 older adults, 44 were

cognitively healthy and 42 were living in long-term care fa-

cilities with various degrees of dementia. Each participant

was video recorded during a baseline state when lying flat

on a bed, and also an exam state in which a licensed phys-

iotherapist assisted the participant to execute a sequence of

movements to identify painful areas [18]. Each session was

filmed with three cameras, one capturing the frontal view

and two capturing the side views (right and left). The en-

tire dataset was annotated manually for the level of pain by

trained pain coders using a FACS-based pain rating [27] and

a PACSLAC-II pain rating [10]; clinically validated meth-

ods to score pain in individuals with severe dementia [16].

We used two subsets of this data in our experiments

which we denote by “Target:Frontal” (Tf ) and “Tar-

get:Profile” (Tp). To construct “Target:Frontal”, we sub-

sampled 688 frontal view images from the 86 participants.

To ensure the existence of expressions corresponding to var-

ious levels of pain for each person, images of the exam state

were clustered into 7 groups based on the level of pain ex-

pressed and one image was chosen at random from each

group. Also, to account for the existence of neutral expres-

sions, one image from each participant was selected at ran-

dom from the baseline state. All images were manually ro-

tated when needed to place the face in an upright position

and were manually annotated using the standard 68 land-

mark points. Similarly, to build “Target:Profile”, 679 pro-

file view images were sub-sampled and manually annotated

using the 39 landmark points shown in Figure 1(b).

3. Landmark Detection Methods

The following methods (and models) were used in our

analysis: Active Appearance Models (AAM) [11], Con-

strained Local Neural Field (CLNF) [5], Coarse-to-Fine

Shape Searching (CFSS) [35], Face Alignment Network
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(FAN) [8], Mnemonic Descent Method (MDM) [32], and

Position Map Regression Network (PRNet) [14]. In the fol-

lowing we briefly review these methods.

Active Appearance Models (AAM): An AAM [11] is a

generative model that captures variations of shape and ap-

pearance of a deformable object from a set of labeled im-

ages. The model thus has two components, one for shape,

and another for appearance. To train the AAM model, first

Procrustes analysis is applied on training data and then PCA

is performed on the shape labels and image pixels, to build

the shape and appearance models. During fitting, the AAM

initializes from the mean shape and tries to find the best set

of parameters that minimizes the difference between the in-

put image and the reconstructed image (based on shape and

appearance parameters).

Constrained Local Neural Field (CLNF): A CLNF by

Baltruaitis et al. [5] is an instance of the Constrained Lo-

cal Model (CLM) [13] that incorporates Local Neural Field

patch experts. Local Neural Field patch experts are applied

on the landmark areas to learn non-linear relationships of

the pixels around the landmark. Similar to AAM, the CLNF

also has a shape component that models the location of the

landmark points as a combination of a mean shape and a set

of transformations. During fitting, the CLNF model tries

to find the best set of transformation parameters that opti-

mizes the patch expert responses while taking the reliability

of each patch expert into account.

Coarse-to-Fine Shape Searching (CFSS): Unlike many

facial landmark detection methods that require an initial

shape (usually the mean shape) to start the fitting process,

Zhu et al. [35] proposed CFSS which initializes searching

from a shape space. A CFSS builds a large space of candi-

date shapes and performs face alignment in a given number

of stages. The model starts searching by sampling from a

large region in the shape space and estimates a finer sub-

region to perform searches in the later stages. The adap-

tive stage-by-stage approach prevents the model from being

trapped in local optima due to poor initialization.

Face Alignment Network (FAN): The FAN model, pro-

posed by Bulat et al. [8], regresses landmark heatmaps di-

rectly. To regress the 2D landmarks, FAN-2D employs a

stack of four hourglass (HG) networks [26] and trains them

with RGB images as input, and 68 2D Gaussian heatmaps

as target output, one for each of the 68 facial landmark

points. A FAN-3D network is jointly trained with an ad-

ditional 2D-to-3D FAN network, where FAN-3D predicts

the 2D projection of the 3D landmark points and the 2D-to-

3D FAN estimates the corresponding z coordinates for the

2D landmark points predicted by FAN-3D. In this work we

fine-tuned FAN-2D with everything but the last hourglass

network frozen, which we refer to as FFAN-HG.

Mnemonic Descent Method (MDM): Trigeorgis et al.

proposed MDM [32], which is an end-to-end face align-

ment model; i.e., it predicts the landmark coordinates di-

rectly from raw image pixels. Instead of more traditional

hand-crafted features such as HOG or SIFT, MDM learns a

two layer Convolutional Neural Network (CNN) as the fea-

ture extractor. For fitting, the MDM model employs the idea

of learning descent directions [33] with an additional RNN

component that learns information about the past descent

directions during training and then uses this information in

the fitting process.

Position Map Regression Network (PRNet): The PRNet

model proposed by Feng et al. [14] employs a Neural Net-

work architecture that contains Residual Blocks [17] and

convolutional layers to simultaneously reconstruct the 3D

facial structure and perform facial landmark alignment. For

training, ground truth 3D facial shapes are first projected

into UV space (a 2D image representation of 3D coordi-

nates) and then the obtained UV images are used to train the

model. For fitting, the PRNet model first predicts the UV

images from the input image and then 3D facial structure

and aligned facial landmarks are derived from the predicted

UV images.

4. Experiments

For fair and comprehensive evaluation, we consider four

different experiments. In the first three experiments we

compare the performance of all methods on the cognitively

healthy older adult subset (44 × 8 = 352 images) vs. the

dementia subset (42 × 8 = 336 images) of the Tf dataset.

In the last experiment, we use the healthy subset (338 im-

ages) and the dementia subset (325 images) of the Tp dataset

for evaluation. The training set configurations explored in

each experiment are described below. In any configuration

that involved training examples from Tf and Tp, leave-one-

participant-out cross-validation was employed to ensure im-

ages from the same person did not appear in both training

and test data.

4.1. Experimental Settings

Experiment 1: In this experiment, we used the off-the-

shelf versions of the following seven methods: CLNF [5],

CFSS [35], AAM [1], FAN-2D and FAN-3D [8],

MDM [32], and PRNet [14]. Many groups offer pre-trained

AAM models which are usually trained on S1. For consis-

tency, we also trained the the AAM model on S1.

Experiment 2: In the second experiment, we evaluated dif-

ferent models when re-trained/fine-tuned with Tf . Models

AAM, CLNF, and CFSS were re-trained with Tf . However,

since Tf was significantly smaller than the original dataset

used to train model FAN-2D, a fine-tuned version of this

model with Tf (which we call FFAN-HG) was included in
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this experiment. Models MDM, FAN-3D, and PRNet were

excluded due to unavailability of the training code and lack

of 3D ground truth landmark annotations for images in Tf .

Experiment 3: In our third experiment, we evaluated vari-

ous methods when re-trained with the following configura-

tions: S1, S2, S1 ∪ S2, Tf ∪ S1, Tf ∪ S2, Tf ∪ S1 ∪ S2. In

addition to methods MDM, FAN-3D, and PRNet, method

FAN-2D was also excluded from this experiment as it is

originally trained on a super set of S1.

Experiment 4: The off-the-shelf versions of methods FAN-

2D, FAN-3D, and PRNet work on profile faces; therefore,

they were included in this experiment. However, the rest

of the methods only work on frontal and semi-frontal faces

and need re-training to handle profile faces. We re-trained

model AAM with configurations Tp,Mp, Tp∪Mp. But con-

sidering the size of these training configurations, re-training

was not an option for the rest of the methods and thus they

were excluded from this experiment.

4.2. Evaluation

We compare the performance of different methods on the

cognitively healthy older adult subset (H) versus the demen-

tia subset (D) of Tf and Tp in terms of the convergence rate.

To measure the convergence rate, we use its standard def-

inition in the literature [2, 8, 32] as the percentage of test

examples that converge to the ground truth landmark points

given a tolerance in the root mean squared (RMS) fitting

error (here, 5% of the face diagonal).

We also show convergence curves that plot the percent-

age of test examples converged to the ground truth as a

function of tolerance in RMS fitting error (normalized by

the face diagonal). A typical comparison point is the point

on the curve corresponding to 5% tolerance. We perform

this evaluation for the landmark points spanning the whole

face and also for points that lie in specific regions i.e., jaw,

brows, nose, eyes, and mouth. To evaluate statistical signif-

icance, we use the non-parametric Wilcoxon rank-sum test

(on RMS errors) and consider three standard significance

levels 0.05, 0.01 and 0.001.

To ensure a fair comparison, for each image in Tf and

Tp, the same face bounding box (detected by the Dlib face

detector [21]) was used to initialize all the models. Results

in Experiments 1-3 are evaluated using the 68 landmark

points. In Experiment 4, the AAM model gives 39 landmark

points while the rest of the methods output the standard set

of 68 landmark points [15]. The two sets of landmark points

are shown in Figures 1(b) and 1(a). Since there is not a one

to one correspondence between all the points in these mark-

ups, results in Table 3 and Figure 5 are evaluated on the 25

points that are common between the two mark-ups from all

regions of the face except the jaw line. These 25 points are

shown in blue in Figure 1(b).

(a) 68 landmark points (frontal) (b) 39 landmark points (profile)

Figure 1. Different sets of landmark points used in the evaluations.

5. Results

The convergence rates obtained for all regions of the face

with the methods explored in experimental settings 1, 2, and

4 on healthy (H) and dementia (D) subsets of Tf and Tp are

shown respectively in Tables 1, 2, and 3. The results of

Wilcoxon rank-sum tests that evaluate the statistical signifi-

cance of difference between the performance on healthy (H)

and dementia (D) subsets of Tf and Tp are also reported for

all methods and regions of the face.

Figures 2, 3, and 5 show the average convergence curves

obtained on healthy (H) and dementia (D) subsets of Tf and

Tp using different methods from experiments 1, 2 and 4 re-

spectively. In these figures, the x-axis shows the RMS fit-

ting error normalized by the face size (diagonal), while the

y-axis shows the percentage of cases with a fitting error less

than the corresponding x-axis value averaged over all meth-

ods included in the evaluation. Figure 4 shows the conver-

gence rates obtained on the 68 landmark points (whole face)

for healthy (H) and dementia (D) subsets of Tf using the re-

trained versions of methods AAM, CFSS, and CLNF on the

training configurations of experiment 3.

The general trend in Experiments 1-3 show that the re-

lationship between convergence rates of all evaluated meth-

ods and dementia is significant on frontal faces (Tf ). Al-

though increasing the variation in the training data by in-

cluding images from various datasets (Tf , S1, and S2) im-

proves the performance on both healthy and dementia sub-

sets of Tf , the difference between the convergence rates for

these two subsets remains large and statistically significant

(Experiments 2-3). Results of Experiment 4 show a similar

trend on profile faces (Tp) with less difference between the

convergence rates obtained for healthy and dementia sub-

sets when compared to frontal faces (Tf ).

From Experiment 1 (Table 1 and Figure 2), we can see

that the difference in convergence rates obtained on the

whole face between healthy and dementia subsets of Tf is

large and statistically significant for every one of the seven

methods evaluated. Figure 2 shows that for all regions of

the face the convergence curves for the healthy subset lie
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Figure 2. Experiment 1: Comparison of the average convergence curves obtained on healthy subset (H) and dementia subset (D) of Tf .

The values on y-axis are averaged over seven methods: CLNF, CFSS, AAM, FAN-2D, FAN-3D, MDM, and PRNet.

Table 1. Experiment 1: Comparison of convergence percentage within 5% tolerance of RMS fitting error obtained on healthy subset (H)

and dementia subset (D) of Tf . p-values are color coded with respect to three standard significant levels 0.05, 0.01 and 0.001.

Methods Whole Jaw Brows Nose Eyes Mouth

H D H D H D H D H D H D

CLNF
71.88 63.39 24.15 26.49 50.00 42.26 84.94 77.38 85.51 72.32 84.66 75.60

p < 0.001 p = 0.367 p = 0.078 p < 0.001 p < 0.001 p < 0.001

CFSS
80.11 65.77 27.27 27.98 61.08 50.00 90.63 88.69 85.51 77.38 90.34 79.17

p < 0.001 p = 0.848 p < 0.001 p < 0.001 p < 0.001 p < 0.001

AAM
87.78 71.73 44.89 29.76 62.50 44.94 95.45 95.24 94.60 87.80 93.75 86.31

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

FAN-2D
81.53 61.90 19.89 19.94 68.18 56.25 83.52 63.39 99.43 96.43 97.44 85.12

p < 0.001 p = 0.095 p = 0.065 p < 0.001 p < 0.001 p < 0.001

FAN-3D
71.88 50.60 18.18 12.20 61.93 52.98 85.80 65.48 98.86 94.64 98.58 89.88

p < 0.001 p < 0.001 p = 0.013 p < 0.001 p < 0.001 p < 0.001

MDM
91.76 70.24 36.36 25.30 65.06 47.02 97.16 90.18 97.44 91.96 95.74 85.42

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

PRNet
76.14 64.29 20.74 18.75 72.73 65.18 93.75 88.10 95.45 89.88 86.08 76.49

p < 0.001 p = 0.008 p = 0.004 p < 0.001 p < 0.001 p < 0.001
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Figure 3. Experiment 2: Comparison of the average convergence curves obtained on healthy subset (H) and dementia subset (D) of Tf .

The values on y-axis are averaged over four methods: CLNF, CFSS, AAM, and FFAN-HG.

Table 2. Experiment 2: Comparison of convergence percentage within 5% tolerance of RMS fitting error obtained on healthy subset (H)

and dementia subset (D) of Tf . p-values are color coded with respect to three standard significant levels 0.05, 0.01 and 0.001.

Methods Whole Jaw Brows Nose Eyes Mouth

H D H D H D H D H D H D

CLNF
87.78 75.89 65.91 48.51 75.57 63.39 90.63 77.68 91.19 81.55 91.19 80.65

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

CFSS
56.53 36.9 24.43 13.1 34.09 28.87 82.67 70.83 65.91 57.14 87.78 65.48

p < 0.001 p < 0.001 p = 0.018 p < 0.001 p < 0.001 p < 0.001

AAM
94.32 83.93 62.22 48.51 69.89 59.82 98.86 92.86 98.01 91.37 97.16 84.52

p < 0.001 p < 0.001 p = 0.004 p < 0.001 p < 0.001 p < 0.001

FFAN-HG
96.02 90.18 70.74 63.99 67.61 63.1 98.01 97.02 94.89 87.5 98.3 93.45

p < 0.001 p = 0.003 p = 0.003 p < 0.001 p < 0.001 p < 0.001

above the convergence curves for the dementia subset. We

also notice that the difference between convergence curves

is larger in the mouth, eyes, and nose regions of the faces as

compared to the brows and the jaw. This has implications in

applications where the tracking of the mouth, eyes, or nose

regions is important, e.g., in the detection of pain [27].

Table 2 and Figure 3 show the performance of re-

trained/fine-tuned versions of methods CLNF, CFSS, AAM

and FFAN-HG with images from Tf on various regions of

the face. Comparing the results reported in Tables 2 and 1,

we see that the performance for all methods except CFSS

has largely increased on both healthy and dementia subsets

after including images from Tf in the training data. This is

possibly because of the searching mechanism used in the

CFSS model and the significant difference between the size

of Tf and the data used originally to train it.

Although we see a boost in the convergence curves for

most regions when comparing Figure 3 to Figure 2, the con-
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Figure 4. Experiment 3: Comparison of convergence percentage within 5% tolerance of RMS fitting error obtained on healthy subset (H)

and dementia subset (D) of Tf using various versions of three methods AAM, CFSS, and CLNF trained on configurations S1, S2, S1 ∪

S2, Tf ∪ S1, Tf ∪ S2, Tf ∪ S1 ∪ S2. RMS fitting errors are computed over the standard 68 landmark points (whole face).

vergence rates for the dementia subset are still lower com-

pared to those for the healthy subset of Tfand the difference

is significant for all regions of the face (Table 2). This trend

is particularly noticeable in the jaw and in the eyes.

Figure 4 shows the convergence rates obtained on

healthy (H) and dementia (D) subsets of Tf using the re-

trained versions of methods AAM, CFSS and CLNF on

the following training configurations: S1, S2, S1 ∪S2, Tf ∪

S1, Tf ∪ S2, Tf ∪ S1 ∪ S2. We see that the convergence

rates for healthy and dementia subsets vary largely by con-

figuration; however, the difference between them remains

significant for all configurations and methods (except for

method CLNF when trained on Tf ∪ S2 and Tf ∪ S1 ∪ S2).

A similar trend was also observed in the convergence rates

for all regions of the face (included in the supplementary

materials). Comparing the results of Experiments 1, 2 and

3, we notice that the inclusion of additional variation in the

training data can help to improve the performance in gen-

eral, but it does not help with mitigating the gap between

the performance on healthy and dementia subsets.

Table 3 and Figure 5 show the performance of AAM,

FAN-2D, FAN-3D, and PRNet when evaluated on the pro-

file face of Tp. Performance is poor as compared to per-

formance on Tf ; but, similar to the previous experiments,

we see that the average convergence curves for the healthy

subset lie above the curves for the dementia subset in all re-

gions of the face. The difference between the performance

on healthy and dementia subsets of Tp is smaller compared

to the ones for frontal faces in Tf , yet it is significant on

some regions of the face such as the nose and the mouth.

6. Conclusions

Accurate detection of facial landmark points is an impor-

tant requirement for a wide range of clinical applications

involving older adults and/or individuals with a cognitive

or a physical disability. In this paper, we provide a com-

prehensive evaluation of state-of-the-art facial landmark de-

tection on faces of older adults with and without dementia.
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Figure 5. Experiment 4: Comparison of the average convergence curves obtained on healthy subset (H) and dementia subset (D) of Tp.

The values on y-axis are averaged over four methods: AAM, FAN-2D, FAN-3D, and PRNet.

Table 3. Experiment 4: Comparison of convergence percentage within 5% tolerance of RMS fitting error obtained on healthy subset (H)

and dementia subset (D) of Tp. p-values are color coded with respect to three standard significant levels 0.05, 0.01 and 0.001.

Methods Whole Brows Nose Eyes Mouth

H D H D H D H D H D

AAM
44.67 37.23 32.84 21.54 51.18 46.15 47.93 44 52.66 37.54

p < 0.001 p = 0.015 p = 0.034 p = 0.010 p < 0.001

FAN-2D
35.21 26.15 39.64 32.31 35.21 21.85 49.41 44 35.5 29.23

p = 0.193 p = 0.817 p < 0.001 p = 0.268 p = 0.173

FAN-3D
36.09 22.15 36.39 28.31 43.2 23.08 49.41 41.23 38.76 29.23

p = 0.043 p = 0.709 p < 0.001 p = 0.143 p = 0.030

PRNet
41.12 28.92 31.66 22.15 76.92 64.31 43.79 35.38 36.98 29.85

p = 0.192 p = 0.951 p < 0.001 p = 0.553 p = 0.082

Our evaluation demonstrates an algorithmic bias in state-of-

the-art facial landmark detection methods, which affects the

performance of these methods for older adults with demen-

tia. Furthermore, our empirical analysis shows that tech-

niques such as fine-tuning and re-training can improve the

performance for both groups; however, these methods can-

not reduce the gap between the performance for adults with

and without dementia. As interest in employing facial anal-

ysis methods in clinical applications grows [3, 4], our study

sheds light on the limitations of existing facial landmark de-

tection methods and the challenges of applying these meth-

ods to clinical populations. In future work, we plan to inves-

tigate potential solutions to overcome these biases in facial

landmark detection methods.
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